Lossless expansion and Measure Hyperfiniteness
(1) Countable Borel equivalence relations (CBER)
X, Y standard Bored spaces
E, F equivalence relations on X, Y
E is a CBER
$E \subseteq X \times X$ is Bore
Bowel
reducible
$E \leq_{B} F \quad \exists f: x \rightarrow Y$ Boned soto $x E_{y} \Rightarrow f(x) F f(y)$
Examples
(1) $\Delta_{x}=$ equality on $x \quad x \sim y \Leftrightarrow x=y$
(2) $\Delta_{N} \equiv_{B}$ any CBER with countably many classes
(3) $E_{0}=$ eventual equality on 2^{N}

$$
f \sim g \Leftrightarrow \exists N \forall n \geqslant N \quad f(n)=g(n)
$$

(11) Picture of CBERs

(1.1) Picture of CBERs

Question What is the structure of
 non-hyperfinite $C B E R s$?

Thm (Adams-Kechris) There is an uncountable antichain of CBERS 2 Actually much more Questions
(1) More dichotomy threorems?
$E>_{B} E_{0}$ s.t. $\forall F\left(F \in B E_{0}\right.$ or $\left.E S_{B} F\right)$

$$
\begin{aligned}
& \text { (.E」 } \\
& \text { - EO }
\end{aligned}
$$

(2) Successor of E_{0} ?

$$
E>_{B} E_{0} \text { s.t. } F<_{B} E \Rightarrow F \leqslant_{B} E_{0} \text { ? }
$$

$\left({ }^{\cdot E}\right)_{0} \rightarrow$ empty
(2) Measure reducibility

Comment All known proofs of $E \not_{B} F$ use measure theory
Idea Study S_{B} up to measure zero
μ Bored probability measure on X
$E \leq \mu F \quad \exists A \subseteq X$ s.t. $\mu(A)=1$ and $E_{l_{A}} \leqslant B F$
$E \leq M F \quad$ For all $\mu, E \leq \mu F$
E is μ-hyperfonite $\exists A \subseteq X$ sit. $\mu(A)=1$ and $E_{I_{A}}$ hyperfinite E is measure hyperfonite for all μ, E is μ-hyperfinite
Comment E measure hyperfinite $\Leftrightarrow E \leq M E_{0}$

(2.1) Conley and Miller's results

Question More dichotomy theorems?

$$
E>\otimes_{M} E_{0} \text { sit. } \forall F\left(F \leq \otimes_{M} E_{0} \text { or } E \leq S_{M}^{8} F\right)
$$

Thm (Conley-Miller) No countable base for non-measurehyperfinite CBERs under \leq_{M}
I.e. for any $\left\langle F_{n}\right\rangle_{n \in \mathbb{N}}$ non-mearure-lyperfinite, $\exists E$ sit. for all $n, F_{n} \& M E$
\Rightarrow No dichotomy thu
The point Any further dichotomy cannot use measure theory

Question Successor of E_{0} ?

$$
E>_{M} E_{0} \text { sit. } F<_{{\underset{\mu}{M}}} E \Rightarrow F \leqslant{\underset{M}{M}} E_{0} ?
$$

This talk Probably yes.
(2.2) Successors of E_{0}

Question Successor of E_{0} ?

$$
E>_{M} E_{0} \text { sot. } F<_{M} E \Rightarrow F \leq_{M} E_{0} \text { ? }
$$

Thm (Conkey-Miller) Suppose λ is a measure st.
(1) E is not λ-hyperfinite
(2) For all $\mu \perp \lambda$, E is μ-hyperfonite

Then E is a successor of E_{0} for $\leqslant M$
This talk (me + Jan Grebik):
(1) A combinatorial condition that implies Conley \& Miller's condition \longrightarrow lossless expansion
(2) Two plausible candidates for this combinatorial condition
(3) Lossless expansion
$G=(V, E)$ finite d-regular graph

A
∂A

Def (Edge expansion) $h(G)=\min _{|A| \leq|V| / 2}|\partial A| /|A|$
$h(G)$ large \Rightarrow hard to trap a random walk in a set A
Comment Random d-regular graph has high expansion

$$
h(G) \approx d / 2
$$

Comment average degree of $A=d-|\partial A| /|A|$
(Informal) Def G is a lossless expander if very small subsets of G have almost optimal expansion

$$
|\partial A| /|A| \geqslant d-2-\varepsilon
$$

(Informal) Def G is a lossless expander if very small subsets of G have almost optimal expansion
average degree $\leqslant 2+\varepsilon$
Question Why $\leqslant 2+\varepsilon$? Why not $\leqslant 1+\varepsilon$?
Answer

average degree of A : $2-\varepsilon$
(Non-
standard) Def A family of d-regular graphs G_{0}, G_{1}, \ldots is a lossless expanding family if for all $\varepsilon>0$ there is $\delta>0$ and N sit.
$\begin{aligned} & n \geq N, \quad A \subseteq V\left(G_{n}\right), \\ &|A| \leqslant \delta\left|V\left(G_{n}\right)\right|\end{aligned} \Rightarrow$ average deg. of $A \leq 2+\varepsilon$
(Non-standard)
Def A family of d-regular graphs G_{0}, G_{1}, \ldots is a lossless expanding family if for all $\varepsilon>0$ there is $\delta>0$ and N sit.

$$
\begin{array}{r}
n \geq N, \quad A \subseteq V\left(G_{n}\right), \\
|A| \leqslant \delta\left|V\left(G_{n}\right)\right|
\end{array} \Rightarrow \text { average deg. of } A \leq 2+\varepsilon
$$

Example $G_{n}=$ random d-regular graph on n vertices w.h.p. G_{0}, G_{1}, \ldots is a lossless expander

Recently: Lossless expanders used to construct good quantum error -correcting codes
(4) Lossless expansion in Borel graphs
$G \quad d$-regular Bore graph on X λ Borel probability measure on x

$$
\left.\begin{array}{l}
\operatorname{deg}_{A}(x)=|\{y \in A \mid(x, y) \in E(G)\}| \\
\operatorname{avg} \operatorname{deg}_{\lambda}(A)=\int_{A} \operatorname{deg}_{A}(x) d \lambda
\end{array}\right\} A \subseteq X \quad \text { Bovel }
$$

Def G is a λ-lossless expander if for all $\varepsilon>0$ there is $\delta>0$ such that $\lambda(A) \leq \delta \Rightarrow \operatorname{avg}_{\operatorname{deg}}^{\lambda} \boldsymbol{}(A) \leq 2+\varepsilon$

Comment $N(A)=A \cup\{y \mid \exists x \in A(x, y) \in E(G)\}$ $\operatorname{avg} \operatorname{deg}_{\lambda}(A) \leq 2+\varepsilon \Rightarrow \lambda(N(A)) \geqslant(d-1-\varepsilon) \lambda(A)$

65 -regular \longrightarrow most vertices in A have $\geqslant 3$ neighbors outside A
4.1) Lossless expansion and successors of E_{a}
X compact Polish space coth fixed metric
Γ finotely-gewerated non-amenable group acting freely on X
G Schreier graph of $\Gamma \curvearrowright x$
$\lambda \quad \Gamma$-invariant probability measure on X sit. $\operatorname{supp}(\lambda)=X$
E orbit equivalence relation of $\Gamma \curvearrowright x$
Thu (Grebik-L.) If Γ acts by isometries and G is a λ-lossless expander then E is a successor of E_{0} for $\leqslant M$

Idea Γ non-amenable, acts freely \Rightarrow not λ-hyperfinite $\mu \perp \lambda, \lambda$-lossless expander $\Rightarrow \mu$-hyperfinite
To finish, apply Conley \& Miller's the
(4.2) Proving hyperfinoteness

Two useful ideas when proving μ-hyperioniteness
(1) Def An undirected Borel graph G is orientable if its edges can be directed such that each vertex has out degree at most 1

Thm (Dougherty-Jackson-Kechris) If G is rentable then the associated equivalence relation is hyperfonite
(2) To show E is u-hyperfonite, it is enough to show that for all $\varepsilon>0$ there is A s.t. $\mu(A) \geq 1-\varepsilon$ and E_{A} is hyperfinite
\longrightarrow Essentially Dye-krieger
(Because we can assure μ quasi-inuariant)
(4.3) Proof sketch

Tho (Grebik-L.) If Γ acts by isometries and G is a λ-lossless expander then E is a successor of E_{0} for $\leqslant M$

Fix $\mu \perp \lambda, \quad \varepsilon>0$
Goal: Find $A \subseteq X$ sot. (1) $\mu(A) \geqslant 1-\varepsilon$
(2) $G_{I_{A}}$ Borel orientable

Iterative process: On each step, delete a small number of vertices \& orient some edges

To ensure $\mu(A) \geqslant 1-\varepsilon$: On each step, many more edges oriented than vertices deleted

Iterative process: On each step, delete a small number of vertices \& orient some edges

Each step:
Phase 1 Iteratively orient degree 1 vertices

Phase 2 Cut \& orient long paths

Iterative process: On each step, delete a small number of vertices \& orient some edges

Claim 1: This produces an orientation
We only orient an edge away from a vertex when the vertex has degree 1

Claim 2: We never get stuck
There is always either a deg. 1 vertex or a long path
If not, get a set with high average degree and λ-measure 0 all vertices deg. $\geqslant 2$,
Contradicts lossless expansion lots of high dog. vertices

After taking S-thickening for some small enough δ
(5) Candidates

Thu (Grebik-L.) If Γ acts by isometries and G is a λ-lossless expander then E is a successor of ϵ_{0} for $\leqslant m$ Question Does this ever actually happen?

Two candidates:
(1) Random rotations of s^{2}
(2) Limit of sequence of finite graphs
(5.1) Random rotations of S^{2}

Pick two rotations $\gamma_{0}, \gamma_{1} \in S O$ (3)

$$
\begin{aligned}
& \Gamma=\left\langle\gamma_{0}, \gamma_{1}\right\rangle \\
& x=S^{2} \\
& \lambda=\text { Lebesgue measure }
\end{aligned}
$$

Fact If we pick two rotations of s^{2} at random then with probability 1, they generate a free subgroup of so (3)

Bourgain-Gamburd: Many examples of 2 rotations which generate expander graphs Z but not necessarily lossless expanders
(5.2) Limit of forte graphs

Def Given a finite graph G, a k-lift $G^{\prime} \rightarrow G$ is a graph formed from G by:
(1) Replace every vertex u of G by k vertices u_{1}, \ldots, u_{k}
(2) Replace every edge (u, v) of G by a matching of $\left\{u_{1}, \ldots, u_{k}\right\} \&\left\{v_{1}, \ldots, v_{k}\right\}$

If matching are chosen randomly, G^{\prime} is a random k-lift of G

Idea (1) Start with $G_{0}=$

Note: \mathbb{F}_{2} acts on G_{0}
(2) Form $G_{0} \leftrightarrow G_{\substack{\text { random } \\ k_{0}-l_{i}+t}}^{\substack{\text { random } \\ k_{1}-1 \nu f t}} \cdots$
$k_{0}, k_{1}, k_{2}, \ldots$ fast-growing sequence
(3) $G=\lim _{n} G_{n}$

Note: \mathbb{F}_{2} acts on G, freely w/ prob. 1
(4) $\lambda=$ natural measure on $G=$ limit of counting measures on G_{n}
Some evidence G is a λ-lossless expander

