Lossless expansion and Joint work with Jan Grebik Measure

Hyperfiniteness

1) Countable Borel equivalence relations (CBER)
X Y shoulded Borel spaces
X, Y standard Borel spaces E, F equivalence relations on X, Y
E is a CBER E S X X 75 Borel
rel All equivalence classes countable
ducible D ESBF 3f: X -> Y Borel s.t. x Ey -> f(x)Ff(y)
Examples
② AN ≡B any CBER with countably many classes
3 Eo = eventual equality on 2^N
f~g (=) = N & n > N f(n) = g(n)

1 Picture of CBERS

Thm (Silver) Either ESBAN or DRSBE Thm (Harrington-Kechi9s-Louveau) Either E ≤ B DR or Eo ≤ B E Def E 7s hyperfinite of there are E, C E2C... s.t. all equivalence classes of En are finite & E= Un En Thm (Dougherty-Jackson-Kechas)

E hyperforite (E < B E0 Question What as the structure = CBGR with 1 class of non-hyperfinite CBERs? Do = CBER with 0 classes

(1) Preture of CBERS Question What is the structure of Adams - Kechris non-hyperfinite CBERs? Thm (Adams - Kechris) There is an uncountable antichain of CBERs 2 Actually much more Questions 1 More dichotomy theorems? E>BEO s.t. VF (FEBEO or ESBF) 2 Successor of Eo? E>BEO S.t. F<BE => F = BE_?

	ne reducibili		for E	, F non-sme	ooth
Comme	nt All known	proofs of	E \$ B F we	measure t	heory
Idea	Study <b< td=""><td>up to mea</td><td>sure zero</td><td></td><td></td></b<>	up to mea	sure zero		
Щ	Borel probabili	ty measure	on X		
E ≤M E ≤M	F For all	s.t. u(A) = u, E ≤ u F	\ and EIA	≤ _B F	
E ss E ss	m-hyperfinite measure hypers	BASX for a	s.t. u(A)=1 II M, E 78	and EIA I	hyperfinite
Comme	mt E measure	hyperfinite	⇔ E ≤m	٤,	
	·	~→	0 0	3	
	•		•		

(2.1) Conley and Miller's results
Question More dichotomy theorems?
Question More dichotomy theorems? E>KE0 s.t. VF (FEXE0 or ESXF)
Thm (Conley-Miller) No countable base for non-measure-
hyperfinite CBERs under sm
I.e. for any (Fn)nen non-measure-hyperfamile, I E s.t. for all n, Fn \$m E No dichetomy thm
JE s.t. For all n, Fn \$ME
The point Any Further dichotomy Eo
The point Any Further dichotomy cannot use measure theory
Question Successor of Eo? E>m Eo s.t. F <m e=""> F=m Eo?</m>
Thas talk Probably yes.

Quest	90n Su	ccessor o	f E.?				
	E?	MEO S.	t. F<,	E => F	≤M Eo?		
Thm	(Contey	- Miller)	Suppose	. L is a	z measu	re s.t.	
(DES	not h	- hyperfina	te		AE <	M(A)=
(2) For	all MI	X) E ?	5 M-hyp	erfonde		$\lambda(A) =$
The	n E	75 a S	nccessor	of Eo	for &M	AE ←	XCA J C
IWIS	trik (me + J	an Grebi	K) •			.4511 - 1
	() A 🚅	mbinatori	al condit	90N that	- implies	Contey &	Millers
	con	lition	→ los	sless expa	nsion	Conley &	
	(D) Two	plansop	le candi	dates for	r thus con	mbinatorial	condition

3 Lossless expansion finite d-regular graph G = (V, E) {e | one endpoint of e in A, one in V-A} Def (Edge expansion) h(G) = min 18A1/1A1 h(G) large > hard to trap a random walk In a set A Comment Random d-regular graph has high expansion h(G) ≈ d/2 Comment average degree of A = d - 12A/1A1 (Informal) Def G is a lossless expander if have almost optimal expansion) very small subjects of G ⇒ average degree $\leq 2+\epsilon$ $\frac{13A1}{1A1} \geq d-2-\epsilon$

(Informal) Def G is a lossless expander if very small ruboets of G have almost optimal expansion > avorage degree ≤ 2+E Question Why < 2+ E? Why not < 1+ E? Answer of A: 2-E (Nonstandard) Def A family of d-regular graphs Go, G,... is a lossless expanding family if for all E>O there is \$>0

and N s.t. $N \ge N$, $A \subseteq V(G_n)$, \Rightarrow average deg. of $A \le 2 + \varepsilon$ $|A| \le 8|V(G_n)|$

Non-standard)	
Det A tay	mily of d-regular graphs Go, G1, is a
and N	expanding tanily it for all 200 there is 800
n>N,	nily of d-regular graphs Go, G ₁ , is a expanding family if for all $E>0$ there is $8>0$ s.t. $A \subseteq V(G_n)$, \Rightarrow average deg. of $A \le 2+E$ $ A \le 8 V(G_n) $
Example	Gn = random d-regular graph on n vertoces
	w.h.p. Go, G1, 95 a lossless expander
Recently:	Lossless expanders used to construct good quantum error-correcting codes

4 Lossless expansion in Borel graphs G d-regular Borel graph on X A Borel probability measure on X degA(x) = | {y ∈ A | (x,y) ∈ E(G) }] FASX Borel avg deg (A) = I deg (x) dx Def G is a λ -lossless expander if for all $\epsilon > 0$ there is $\delta > 0$ such that $\lambda(A) \leq \delta \Rightarrow \text{avg deg}_{\lambda}(A) \leq 2 + \epsilon$ Comment $N(A) = A \cup \{\underline{y} \mid \exists x \in A \ (x,y) \in E(G)\}$ avg deg $\chi(A) \le 2 + \varepsilon \Rightarrow \chi(N(A)) \ge (d - 1 - \varepsilon) \chi(A)$ G 5-regular >> most vertices in A have > 3 neighbors
outside A

	sless expansion and successors of Eo compact Polish space with fixed metric finitely-generated non-amenable group acting fre Schreier graph of [OX [-invariant probability measure on X s.t. supp(X)= orbit equivalence relation of [OX	
r ×	compact Polish space with fixed metric	
<u> </u>		
	Finitely-generated non-amenable group acting tre	ely on
G	Schreier graph of PAX	<u> </u>
>	[- Invariant probability measure on X s.t. supp(x)=	= X
E	orbit equivalence relation of FDX	
	(Grebik-L.) If I acts by sometimes and G is lossless expander then E is a successor of Eo fo	· ~ M
Tlea	[non-amenable at freely = not 1-hunouf	المركامة
	L Γ non-amenable, acts freely \Rightarrow not λ -hyperfinite $U \perp \lambda$, λ -lossless expander $\Rightarrow U$ -hyperfinite	
	M + M , M tassiess expanded - M type (Imile	
	To finish, apply Conley & Miller's 4hm	
	(5) 1113 Sub- J 22 (1113)	

4.2 Proving hyperfiniteness

Two useful ideas when proving u-hyperfonoteness

O Def An undirected Borel graph G is orientable if its edges can be directed such that each vertex has out degree at most 1

Thm (Dougherty-Jackson-Kechris) If Gis orientable then the associated equivalence relation is hyperfinite

2) To show E 75 M-hyperfinite, it is enough to show that for all E>0 there is A s.t. $M(A) \ge 1-E$ and E_{1A} is hyperfinite

Essentially Dye-Krieger

assure u quasi-invariant)

Thm (Grebik-L.) If I acts by sometimes and G is a λ -lossless expander then E is a successor of Eo for $\leq M$

Fix MIX, E>0

Goal: Find ASX s.t. Du(A) > 1-E 3 Gla Borel orientable

Iterative process: On each step, delete a small number of vertices & orient some edges

To ensure u(A) > 1-E: On each step, many more edges oriented than vertices deleted

Iterative process: On each step, delete a small number of vertices & orient some edges Each step: Iteratively orient degree 1 vertices Phase 1 Cut & orient long paths Phase 2

Iterative process: On each step, delete a small number of vertices & orient some edges Claim 1: This produces an orientation We only orient an edge away from a vertex when the vertex has degree 1 Claim 2: We never get stack
There is always either a deg. 1 vortex or a long path If not, get a set with high average degree and 1-measure 0 rall vertices deg. 22, lots of high deg. vertices Contradicts lossless expansion After taking S-thickening for some small enough S

3	Candidates
	Thm (Grebik-L.) If I acts by isometries and G is a λ -lossless expander then E is a successor of Eo for $\leq m$
	Question Does this ever actually happen? Two candidates:
	1 Random votations of 52
	2 Limit of sequence of finite graphs

ick two notations 80,81	€ SO(3)
Γ = < y ₀ , y ₁ >	
$X = 5^2$	
$\lambda = Lebesgue measure$	
et If we prek two retains	trions of 5° at random then we aenerate a tree subarous of
	tions of 5° at random then by generate a tree subgroup of
	drons of 5° at random then y generate a tree subgroup of examples of 2 rotations which graphs 7 but not necessarily lossless expanders

Def Given a finite graph G, a k-lift G' \longrightarrow G is a graph formed from G by:

- O Replace every vertex u of 6 by k vertices u,..., uk
- @ Replace every edge (u,v) of G by a matching of {u,...,uk} & {v,...,vk}

If matchings are chosen randomly, 6' 75 a random K-178+ of G

Idea 1 Start with Go = Note: Itz acts on Go 2 Form 60 4 6, 4 624 ... Ko, K., Kz,... fast-growing sequence 3 G = lim Gn Note: Fz acts on 6, freely of prob. 1 λ = natural measure on G = 15 mit of counting measures on Gn Some endence G 2s a 1-lossless expander